

ZYBO Video Workshop
Paris, FRANCE

23.03.2017

Digilent ZYBO Video Workshop

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 2 of 39

1 Theoretical background

Software is everywhere. The flexibility it offers to designers allows it to be used in a multitude of
applications. Many consumer, industrial or military products are either running software or began as
a software model or prototype executing on a generic circuit, or processor. Decades of advances in
software engineering resulted in ever higher abstractions, ever smarter tools, ever increasing
number of automatic optimizations that improve code re-use, shorten design time and increase
performance. Continuous performance increase quantified by the number of instructions executed
per second has been driven at first by the increase in processing frequencies, then by parallelization
of algorithms and simultaneous execution of tasks by multiple processing cores.

The ubiquitous nature of software lead to most of the engineering problems to be approached with
software solutions at first. Depending on the application a software-only approach might not meet
the requirements, be those latency, throughput, power or other. An expensive option would be
handing the algorithm over to a hardware engineer for a custom circuit implementation. The entry
cost of application-specific integrated circuit (ASIC) design is still high despite advancements in
fabrication technologies. Depending on the product forecasts, and ASIC design might not be viable
economically.

Bridging the gap between generic processor circuits and ASICs are FPGAs, allowing the use of blank
reprogrammable hardware logic elements to implements a custom circuit. It offers a lower barrier of
entry to power savings and performance benefits of fabrication technologies without the cost of
ASIC. Also, an algorithm optimized for FPGA implementation benefits from the inherently parallel
nature of custom circuits.

2 Hardware

The Digilent Zybo development board is well-suited for prototyping an algorithm running in software
at first and then off-loading sub-tasks for processing to custom circuits. It is based on a Xilinx Zynq
7010 SoC, a hybrid between a dual-core ARM A9 (processing system, PS) and Artix-7 based FPGA
(programmable logic, PL). Low-latency, high-throughput coupling between PS and PL allows for
software implementation, where design-time is more important than performance, and hardware,
where performance is critical.

The programming model for software usually makes use of programming languages that abstract
from hardware particularities. While this offers increased portability and ways to apply automatic
compiler optimizations, avoiding knowledge about the underlying hardware is not possible anymore
close to the performance limits.

FPGA design can make use of two different programming models. One is RTL description in
VHDL/Verilog, the other is high level synthesis in C/C++. High level synthesis represents a somewhat
similar programming model to software programming. However, for a worthwhile improvement
over software implementation of the same algorithm, one needs to have a good understanding of
the underlying hardware architecture. Much more so than for software in general.

2.1 FPGA Architecture

Field programmable gate array (FPGA) is a large array of configurable logic blocks (CLB), interconnect
wires and input/output (I/O) pads. The CLB is made up of look-up tables (LUT) and flip-flops (FF), in

Digilent ZYBO Video Workshop

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 3 of 39

varying numbers depending on the exact FPGA architecture. This structure is generic enough to
implement any algorithm. During programming the LUTs are programmed to implement a certain
logic function, and FFs to pipeline the data flow synchronous to a clock signal. Interconnect is also
programmed to wire LUTs, FFs, input pads and output pads together resulting in a custom hardware
circuit implementing a certain algorithm.

Current FPGA architecture also include hard primitive blocks that specialize a certain function that
would otherwise be too costly in terms of logic utilization or too slow in terms of throughput to
implement in generic logic. For example, digital signal processing (DSP) blocks are available to
implement a multiply-accumulate circuit with no generic logic utilization. These blocks are optimized
enough to offer superior performance for the specific task. Another example is dual-port static RAM
(BRAM), that offers higher capacities than RAM implemented in LUTs.
These primitive blocks are by default automatically inferred for certain HDL constructs like the
multiply operator (*) for DSP or array access for BlockRAM.

LUT is a memory element that implements a truth-table. Depending on the exact architecture, each
LUT has a number of inputs that address a location in the truth-table. The value stored at that
address is the output of the function implemented. During programming the truth-table is
populated to implement the desired function. It can also be thought of and used as a 2N-memories,
called distributed RAM. It is a fast memory type because it can be instantiated all over the FPGA
fabric, local to the circuit that needs data from it.

FF is a storage element that latches new data on its input when clock and clock enable conditions are
true and permanently provides the stored data on its output.

BRAM is a dual-port RAM that stores a larger set of data. It holds 18Kb or 36Kb and can be
addressed independently over two ports for both read and write. In essence, two memory locations
can be accessed simultaneously in the same clock cycle.

2.2 Parallelism and program execution

A processor core executes software instructions in a sequence. Higher-level programming languages
translate language statements into assembly instructions that perform the function. Under this
abstraction, the addition of two variables usually involves more than one instruction. Apart from the
actual arithmetic operation that accesses internal registers, memory load and store instructions will
be needed. Performance improvements result in optimizing those memory accesses using caches.
Each memory level trades access latency for storage capacity, so less and less data is available at
memories of lower latencies. The job of the programmer and compiler is to ensure that for critical
areas of an algorithm the spatial locality of data is high and can be accessed with the lowest latency
possible.
It requires considerable effort and performance analysis tools to optimize code for execution time.

The FPGA is massively parallel by nature. Every LUT can execute a different function at the same
time, so it is possible to have multiple arithmetic logic units (ALU) executing addition operations, for
example is parallel. On a processor, the ALU is shared and these would have to be executed
sequentially. Memories can be instantiated close to where they are needed, resulting in high
instantaneous memory bandwidth.

Digilent ZYBO Video Workshop

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 4 of 39

The role of high level synthesis tools is to extract the best possible circuit implementation from a
C/C++ code that is functionally correct and meets the requirements. It analyzes data dependencies
determining which operations could and should execute in each clock cycle. Depending on the
targeted clock frequency and FPGA, some operations might take more cycles to complete. This step
is called scheduling. Next, the hardware resources are determined that implement the scheduled
operation best. This is called binding. The last step in the synthesis is the control logic extraction
which creates a finite state machine that controls when the different operations should execute in
the design.

For multi-cycle operations pipelining is performed in the scheduling phase. Imagine the following C
statement:

x=a*b+c;

If the clock period is too small for the multiplication and addition to complete in one clock cycle, it
will be scheduled for two cycles. For every set of inputs a, b, and c it takes two cycles to obtain the
result. It follows that in cycle 2 the multiplier does not perform any operation; it only provides the
result calculated in the previous cycle.

This inefficiency becomes more apparent, when this statement is executed in a loop, ie. the circuit
processes more than one set of input data.

If there was a storage element between cycles, the result from cycle 1 would be saved, and the
multiplier would be free to perform a calculation for the next set of inputs. This concept is called
pipelining and it is a major optimization opportunity increasing the throughput tremendously.

Digilent ZYBO Video Workshop

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 5 of 39

2.3 Performance metrics

The previous example is a great opportunity to introduce some performance metrics definitions. The
latency of the statement above is two, as it takes two cycles to output the result. In the first non-
pipelined case the initiation interval (II) is also two, since it takes two cycles for the circuit to accept
a new set of inputs. However, in the second pipelined case the II is just one, because the circuit is
able to accept a new set of inputs in every cycle, and will output a result in every cycle. The latency is
still two, as the result for the first set of inputs will appear after two cycles. If the circuit processes 10
sets of input data, the non-pipelined versions will have a total latency of 20 cycles ((#-1) * II +
latency). The pipelined versions will only take 11 cycles ((#-1) * II + latency) to provide all the 10
results.

These performance metrics are calculated by the tools for both loops and functions, and are
considered the most important feedback mechanism for the designer to evaluate the synthesized
hardware circuit.

3 Vivado HLS

Xilinx’s offering in high-level synthesis is part of the Vivado suite and is called Vivado HLS. The
workflow is an iterative approach with simulations as verification steps inserted along the way to
make sure the design meets the requirements and is functionally correct right from the initial stages.
Vivado HLS can:

 compile, execute and debug the C/C++ algorithm,
 synthesize into RTL implementation,
 provide analysis features,
 generate and execute RTL simulation testbenches,

Digilent ZYBO Video Workshop

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 6 of 39

 export the RTL implementation as an IP module.

3.1 GUI

The GUI layout is quite similar to other software IDEs. The project explorer lists the source, include
and testbench files. Simulation and synthesis outputs are also visible here grouped into solutions.
The workflow action buttons are in the toolbar ordered by their sequence in the workflow. In the
upper right corner three layout views are available each fitting the current workflow step.

C/C++
algorithm

U
ni

t t
es

t
Synthesis

An
al

ys
is

RTL
Simulation Export IP

Project
sources

and build
output Report

pane/Text
editor

Simulation

Synthesis

RTL Co-simulation

Package IP

Views

Digilent ZYBO Video Workshop

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 7 of 39

4 Task One – Getting familiar with the interface

Let us open an example project to get more familiar with the interface.

Open example project

Launch Vivado HLS 2015.4
from the Start Menu.
On Linux run vivado_hls from
the shell.

Click the Open Example
Project button on the
Welcome Page.

Choose Design
Examples/fp_mul_pow2
from the list of projects

Save project

Browse to the location of
your choice on your local
storage drive
You may choose
zybo_workshop/hls_project
for location.
Click OK

Digilent ZYBO Video Workshop

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 8 of 39

A Vivado HLS project is much like any other C/C++ software project. There is a source file defining
two functions, a header file declaring the functions and some data types. There is also a test bench
source file, which is a regular application with a main entry point that runs test on the functions,
validating them on functional correctness. Test benches are used for C simulation, which is the first
validation step in the design process. The successfulness of C simulation is determined by the return
value of the test bench. It is expected to return 0 for a success, and any non-zero value for failure.

Discuss the implementation of the double_mul_pow2 function and the test bench.

Discuss the results of the C simulation and the messages shown in the console.

Analyze project structure

Open fp_mul_pow2.h
below Includes.

Open fp_mul_pow2.c
below Source.
Open
fp_mul_pow2_test.c
below Test Bench.
Notice that we are in
the Synthesis view
(upper right corner).

Run C simulation

Click the Run C
Simulation button on
the toolbar.
Leave simulation
options at their default
values and click OK

Digilent ZYBO Video Workshop

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 9 of 39

Notice how the Debug view gets activated, the test bench started and stop at the first instruction of
the main function. The test bench can be run step-by-step, breakpoints set, variables and
expressions evaluated just like any other software project.

Run C simulation with debugger

Click the Run C
Simulation button on
the toolbar.
Check the Launch
Debugger option and
click OK

Digilent ZYBO Video Workshop

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 10 of 39

Debug test bench

Double click on the blue
column in line 109 to
place a breakpoint at
the line that calls the
double_mul_pow2
function.

Click the Resume
button in the toolbar to
run the test bench until
the breakpoint is hit

Step into the double_mul_pow2 function

Notice how the variables
test_val and test_exp
changed before the
breakpoint was hit.
Click the Step Into button
in the toolbar or press F5
on your keyboard.

Keep pressing F6 to
execute the function
statement-by-statement.

Digilent ZYBO Video Workshop

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 11 of 39

Notice how solution1 in the project view has a csim folder now. Synthesis directives and
simulation/synthesis results are grouped into solutions. Having multiple solutions allows us to try
different settings, devices, clock periods on the same set of source files and analyze the results for
each.

Exit the debugger

Stop the debugger

Go back to Synthesis
view.

Synthesis

Synthesize the design by
clicking the C Synthesis
button in the toolbar.
Watch the messages in
the console until
synthesis completes.

Notice the new syn folder
in solution1 and the
Synthesis Report that
opened automatically.

Digilent ZYBO Video Workshop

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 12 of 39

Discuss the report. What did HLS synthesize? What are the latency and interval values? What are the
interfaces that got generated?

The Analysis view helps in understanding and evaluating the synthesized design. The synthesized
modules and loops can be seen on the left, along with timing and logic utilization information. In this
case double_mul_pow2 does not have any sub-blocks, it is a flat function. Selecting an item will
bring up the Performance view on the right. This shows the control states of the logic (C0, C1) and
each operation that is scheduled to execute in that state.

Analysis

Open the Analysis view.

Digilent ZYBO Video Workshop

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 13 of 39

When the synthesized design satisfies all the project requirements, the next step is running an RTL
simulation to verify that it is functionally correct. In Vivado HLS terminology this is called C/RTL
Cosimulation. Vivado HLS is capable of automatically generating an RTL test bench by running the C
test bench and using the inputs from there as stimuli and the outputs as expected values.

Performance Analysis

Right-click the purple
cell in column C0 and
row #6, operation
tmp_11(+).

Choose Goto Source.

Digilent ZYBO Video Workshop

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 14 of 39

The Dump Trace option will export the RTL simulation waveforms that can be opened in Vivado
Simulator, for example.

Analyze the simulation waveforms. Look for input values, results. Measure latencies and initiation
intervals.

Since the hardware is now validated, all that is left is to package it up into a reusable format.

C/RTL Cosimulation

Click on the C/RTL
Cosimulation button on
the toolbar

Choose "all" for the
Dump Trace option

Click OK.

Review the messages in
Console

View simulation waveforms

Click on the Open
Wave Viewer button
on the toolbar

Wait for Vivado to
open

Open the Window
menu and go to
Waveform

Digilent ZYBO Video Workshop

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 15 of 39

The exported IP files are generated in the active solution folder under impl. Locate the files and
explore the sub-folders.

This concludes our first task – Getting familiar with the interface.

Package IP

Click on Export RTL
button on the toolbar

Leave options on their
defaults

Click OK

Wait for export to
complete

Digilent ZYBO Video Workshop

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 16 of 39

5 Task Two – Create a pass-through video pipeline

In this step we are going to create an FPGA project that decodes DVI input and forwards it to the
VGA output. This pipeline will serve as the base design that will accept the IP exported from HLS. We
are going to create it in Vivado block design re-using IP available from Digilent and Xilinx. The
Digilent IPs are available online at https://github.com/Digilent/vivado-library/archive/master.zip or
among the workshop materials.

Create project tree

Copy the folder called
"zybo_workshop" to the root
of your local hard drive.
If you choose a location
other than root, make sure
the path has no spaces in it.
Take note of the path as you
will need it later.

Add Digilent board definition files to Vivado

On Windows browse to:
%APPDATA%\Xilinx\Vivado\

On Linux cd to:
$HOME/.Xilinx/Vivado/

Copy the provided "init.tcl"
there.

If you copied
"zybo_workshop" to a
location other than c:\, edit
this file. Make sure the path
is absolute and use forward
slash "/" as path separator
even on Windows.
Save the file and close the
editor.

Digilent ZYBO Video Workshop

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 17 of 39

Create video pipeline project

Launch Vivado 2015.4
(NOT Vivado HLS) from
the Start Menu
Click Create New Project

Click Next

Name the project
"video_pipeline"
Choose
zybo_workshop/vivado
for Project Location

Click Next twice

Create video pipeline project

Launch Vivado 2015.4
from the Start Menu

Click Create New Project
Click Next

Name the project
"video_pipeline"
Choose
zybo_workshop/vivado
for Project Location

Click Next

Digilent ZYBO Video Workshop

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 18 of 39

If “Zybo” is not showing among the known boards, go back a few steps and make sure init.tcl is
installed at the correct location and it has a valid path in it. Restart Vivado and make sure the Tcl
Console is showing that init.tcl has been successfully sourced.

Choose project type

Choose "RTL Project"
for project type.

Make sure "Do not
specify sources at this
time" is ticked.

Click Next.

Choose the Digilent Zybo as target

Select Boards

Choose digilentinc.com
for Vendor

Choose Zybo from the
list below.

Click Next

Click Finish

Digilent ZYBO Video Workshop

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 19 of 39

In this project we are going to use the block design flow to create the FPGA design. This helps us re-
use any available IP so that we can focus on the processing IP created in HLS. The following IPs are
going to be used from Digilent: DVI-to-RGB (DVI Sink), RGB-to-VGA.
And from Xilinx: Video In to AXI4-Stream, AXI4-Stream to Video Out.

Open Project Settings

Open Project Settings from the
Flow Navigator on the left

Add Digilent IP definitions to Vivado

Select the IP category

Switch to the Repository
Manager tab

Click the green plus button

Browse to the
zybo_workshop/repo/vivado-
library folder

Click Select

Vivado will parse the folder
and should find IP definitions
there

Click OK to close Project
Settings.

Digilent ZYBO Video Workshop

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 20 of 39

Create block design in project

Click Create Block Design
on the left toolbar

Leave the defaults and
click OK

Use Board interfaces

Click on the Board tab to
see the interfaces that are
available for the Zybo in
board design flow.
Double-click on System
Clock

Accept the default of
instantiating a new
Clocking Wizard
Double-click on HDMI In

Accept the default of
instantiating a new DVI to
RGB Converter IP

Digilent ZYBO Video Workshop

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 21 of 39

Add IPs to the block design

Right-click on an empty
space in the diagram
and choose Add IP

Search for VGA and
double-click "RGB to
VGA output"

Add IPs to the block design

Repeat for "Video In to
AXI4-Stream", "AXI4-
Stream to Video Out,,
"Video Timing
Controller", and two
instances of "Constant"

Digilent ZYBO Video Workshop

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 22 of 39

Make external interfaces

Right-click the dout
interface on the
xlconstant_1 block and
choose "Make External"

Repeat for
rgb2vga_0/vga_pRed,
rgb2vga_0/vga_pGreen,
rgb2vga_0/vga_pBlue,
rgb2vga_0/vga_pHSync,
rgb2vga_0/vga_pVSync.

Video Timing Controller configuration

Double-click the v_tc_0
block

Configure it like shown
on the left.

Digilent ZYBO Video Workshop

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 23 of 39

DVI Sinks are required to bring the hot plug detect (HPD) pin high to signal their presence to DVI
Sources. We will name this port hdmi_hpd and tie to a constant high value.

Clocking Wizard configuration

Double-click the
clk_wiz_0 block

Open the Output Clocks
tab.

Configure it like shown
on the left

The IP should generate
a 200MHz clock from
the 125MHz on-board
clock

DVI to RGB Video Decoder configuration

Double-click the
dvi2rgb_0 block

Configure it like shown
on the left.

Digilent ZYBO Video Workshop

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 24 of 39

Rename ports/blocks

Click on the external
port created for
xlconstant_1, named
dout[0:0] by default.

On the left, under
External Port
Properties modify the
name field to
"hdmi_hpd"

Digilent ZYBO Video Workshop

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 25 of 39

Constant configuration

In the same manner,
select the xlconstant_0
block and rename it to
"zero".

Double-click the
xlconstant_0 block

Configure it so the
Const Val is "0".

Repeat for xlconstant_1
block, but rename it to
"one" and configure it
for Const Val 1.

Diagram wiring

Wire the blocks like
shown on the next
page.

Click-and-hold on one
interface and drag it to
another to establish a
connection.

The Regenerate Layout
button on the toolbar
to the left of the
diagram will re-arrange
the blocks into a more
readable layout.

Digilent ZYBO Video Workshop

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 26 of 39

Digilent ZYBO Video Workshop

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 27 of 39

All that is left is adding the constraint file which tells the synthesis tool about physical constraints for
the design like which FPGA pin to use for each interface and timing constraints like the maximum
frequency for the DVI pixel clock.

Validating the block design

Validate the design by
clicking on the
corresponding button
on the toolbar on the
left

There should be no
errors reported

If there are, revisit the
wiring between blocks

Generating HDL Wrapper

Right-click on the block
design source file in the
project hierarchy and
choose Create HDL
Wrapper.

Let Vivado manage the
HDL wrapper by clicking
OK.

Digilent ZYBO Video Workshop

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 28 of 39

Importing constraints

Click the Add Sources
button on the left toolbar

Choose Add or create
constraints

Click Next

Click Add files
Browse to the provided
Zybo_B.xdc

Make sure the "Copy
constraints files" option is
ticked.
Click Finish

Generating Bitstream

Click Generate Bitstream
in the Flow Navigator on
the left.
If asked, save the design
and confirm that
synthesis and
implementation should
be run.
When bitstream
generation is completed,
choose "Open Hardware
Manager", which is also
accessible in Flow
Navigator.

Digilent ZYBO Video Workshop

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 29 of 39

The board is now ready to forward video input on its DVI port to VGA. Connect the Zybo to an HDMI
source like a laptop and to a VGA monitor. The laptop should recognize it as a display and you should
be able to extend your desktop to it. The extended desktop should be forwarded by the Zybo to the
VGA monitor.

Program hardware with bitstream

Make sure the Zybo is
connected to the PC
via USB, it is turned on
and the red PGOOD
LED is lit

Choose Open Target
and Auto Connect
from the Flow
Navigator on the left

Program hardware with bitstream

Click on Program
device on the top

Click Program to
download the
bitstream file shown
there to the Zybo

The green DONE LED
on the Zybo should
light up

Digilent ZYBO Video Workshop

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 30 of 39

6 Task Three – Edge detection in HLS

The video pipeline created in Task 2 provides a good basis for image processing functions defined in
HLS. The bus between blocks “Video In to AXI4-Stream” and “AXI4-Stream to Video Out” is a
streaming interface sending data pixel-by-pixel in raster format. While it may seem unnecessary to
convert the RGB video data to AXI-Stream then back, this step ensures the greatest interoperability
between IPs. The RGB video stream is a continuous stream of pixels forming lines interleaved by
blanking intervals. It lacks a hand-shake mechanism that could stop the stream for a while when the
downstream processing logic requires it. AXI-Stream transmits data more efficiently by packing pixel
data and framing signals. Furthermore, thanks to hand-shake signals it allows for buffering and
stopping the stream momentarily. All Xilinx Video Processing IP use AXI-Stream interfaces, if needed
these can be easily inserted into the stream. Due to the streaming nature of the data, different
processing blocks can even be daisy-chained by attaching the output of one to the input of another.
This is called video processing pipeline.

The interface of the pipeline is an essential design aspect of an HLS processing core. The input,
output and control interfaces all need to be modeled in C/C++. Fortunately, the data type modeling
AXI-Stream already exists in HLS template libraries.

So our task is writing a processing block (function), that accepts an AXI-Stream RGB video input
(argument), and outputs the similarly formatted processed video data (argument). The project
requirements are 1280x720@60Hz resolution and a stable video feed.

Add Zybo board definition to Vivado HLS

Browse to your Vivado_HLS
installation folder.

For example, on Windows:
C:\Xilinx\Vivado_HLS\2015.4\
common\config
Or on Linux:

/opt/Xilinx/Vivado_HLS/2015.
4/common/config

Overwrite
VivadoHls_boards.xml with
the one provided among the
workshop materials

Digilent ZYBO Video Workshop

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 31 of 39

New Vivado HLS project

Launch Vivado HLS 2015.4
(NOT Vivado 2015.4) from
the Start Menu
Click Create New Project
Name the project
edge_detect
Place it under
zybo_workshop\hls_project
Click Next

Create new source and header files

Click New File

Browse to
zybo_workshop\hls

Name it
edge_detect.cpp

Repeat for
edge_detect.h

Click Next

Digilent ZYBO Video Workshop

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 32 of 39

Now that the project is created we can get on with writing actual C++ code. The following files will
be written.

Create new source file for test bench

Click New File

Browse to
zybo_workshop\hls

Name it
edge_detect_test.cpp

Click Next

Create project constraints

Enter 13.5 for clock
period

Click the browse
button for part
selection

Click Boards

Choose Digilent Zybo
in the list of boards

Click Finish

Digilent ZYBO Video Workshop

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 33 of 39

#include "hls_video.h"

typedef ap_axiu<24,1,1,1> interface_t;
typedef hls::stream<interface_t> stream_t;

void edge_detect(stream_t& stream_in, stream_t& stream_out);

#define MAX_HEIGHT 720
#define MAX_WIDTH 1280

typedef hls::Mat<MAX_HEIGHT, MAX_WIDTH, HLS_8UC3> rgb_img_t;

#define INPUT_IMAGE "rover.bmp"
#define OUTPUT_IMAGE "rover_output.bmp"

#include "edge_detect.h"

void edge_detect(stream_t& stream_in, stream_t& stream_out)
{
 int const rows = MAX_HEIGHT;
 int const cols = MAX_WIDTH;
 rgb_img_t img0(rows, cols);
 rgb_img_t img1(rows, cols);
 rgb_img_t img2(rows, cols);
 rgb_img_t img3(rows, cols);
 hls::AXIvideo2Mat(stream_in, img0);
 hls::CvtColor<HLS_RGB2GRAY>(img0, img1);
 hls::Sobel<1,0,3>(img1, img2);
 hls::CvtColor<HLS_GRAY2RGB>(img2, img3);
 hls::Mat2AXIvideo(img3, stream_out);
}

Digilent ZYBO Video Workshop

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 34 of 39

#include "edge_detect.h"
#include "hls_opencv.h"

int main()
{
 int const rows = MAX_HEIGHT;
 int const cols = MAX_WIDTH;

 cv::Mat src = cv::imread(INPUT_IMAGE);
 cv::Mat dst = src;

 stream_t stream_in, stream_out;
 cvMat2AXIvideo(src, stream_in);
 edge_detect(stream_in, stream_out);
 AXIvideo2cvMat(stream_out, dst);

 cv::imwrite(OUTPUT_IMAGE, dst);

 return 0;
}

As shown in Task 1, the HLS flow is going to be followed: the processing function written, a test
bench written for it, synthesis, report analysis, C/RTL co-simulation and IP export. The process is
iterated until all the requirements are met.

Add testbench images

Right-click on Test Bench

Choose Add Files
Select both rover.bmp and
rover_golden.bmp to be
added from
zybo_workshop/hls_project

Digilent ZYBO Video Workshop

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 35 of 39

After hardware synthesis completes, review the report for clues on whether project requirements
are met. If analysis determines that the synthesized code does not meet the requirements, HLS can
be directed towards a better design. This is achieved using directives. These influence the choice HLS
makes during synthesis both relating to generated logic and interfaces. In this task, we are going to

Run C Simulation

Click on the Run C
Simulation button in
the toolbar.

Setting top-level function to synthesize

Click on the Project Menu
Choose Project Settings

Choose Synthesis on the
left
Click Browse next to Top
Function

Choose edge_detect
Click OK

Click on the Run C
Synthesis button in the
toolbar to start hardware
synthesis.

Digilent ZYBO Video Workshop

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 36 of 39

set the DATAFLOW and INTERFACES directives. To be able to compare the results with and without
the directives, a new solution can be created.

Create a new solution

Open the Project
menu and choose New
Solution.

Click on Finish to
accept the defaults.
Notice that settings
from solution1 are
going to be copied to
the new solution.

Solution2 now
becomes active.

Setting directives

Open edge_detect.cpp,
which has the function
that needs directives
applied

On the right side panel,
click on the Directives tab
Select stream_in and
stream_out interfaces

Right-click on the selection
and choose Insert Directive

Digilent ZYBO Video Workshop

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 37 of 39

Run hardware synthesis one more time and compare the results to that of solution1. Once the
design meets the requirements, it can be packaged and exported as an IP. Just choose the Export
RTL action in the top toolbar.

Choosing directive options

In the dialog that opens
choose the INTERFACE
directive
For mode option choose
axis to instruct synthesis
to generate an AXI-
Stream interface for
stream_in and
stream_out.
Similary, select function
edge_detect and
activate the DATAFLOW
directive on it.

Package and export IP

Click on the Export RTL
button in the top
toolbar.

Keep the defaults by
clicking on OK.

Notice the impl
subdirectory in
solution2 that will be
created.

Digilent ZYBO Video Workshop

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 38 of 39

The next step is importing the video processing IP in the Vivado project and inserting it into the
video pipeline.

Adding HLS IP to the video pipeline project

Switch back to the
video_pipeline project in
Vivado 2015.4 we created in
task two.

Click Project Settings on the
left toolbar

Select IP and Repository
Manager

Click the green plus sign

Browse to the HLS project
path
zybo_workshop\hls_project\
edge_detect\solution2\
impl\ip

Click Select and OK

Wiring IP into the pipeline

Right-click on an empty space
in the diagram and choose
Add IP

Search for and double-click
on Edge_detect, which is our
HLS IP

Click on the wire between
v_vid_in_axis4s/video_out
and v_axi4s_vid_out/video_in

Press the Delete key

Wire video_out to stream_in
of edge_detect

Wire stream_out to video_in

Digilent ZYBO Video Workshop

Copyright Digilent, Inc. All rights reserved.
Other product and company names mentioned may be trademarks of their respective owners. Page 39 of 39

Zybo should now forward incoming video data to the VGA after applying the edge detection
algorithm on it. Display any image, movie or just the Windows desktop on the secondary display to
see edge detection in action.

This concludes our workshop. Thank you for attending!

Wiring control bus

Wire ap_clk of
edge_detect to the pixel
clock of the pipeline
(PixelClk of dvi2rgb)
Click the plus icon next
to ap_ctrl

Wire ap_start to the
"one" Constant block
Wire ap_rst_n to the
same "one" Constant
block

Download bitstream

Generate bitstream

Click Program Device
under Hardware
Manager and choose
xc7z010.

Click Program to
download to
programmable logic on
the Zynq.

